YES 1.308 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/List.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ LR

mainModule List
  ((intersect :: [Int ->  [Int ->  [Int]) :: [Int ->  [Int ->  [Int])

module List where
  import qualified Maybe
import qualified Prelude

  intersect :: Eq a => [a ->  [a ->  [a]
intersect intersectBy (==)

  intersectBy :: (a  ->  a  ->  Bool ->  [a ->  [a ->  [a]
intersectBy eq xs ys concatMap (\vv2 ->
case vv2 of
  x->  if any (eq x) ys then x : [] else []
  _-> []
) xs


module Maybe where
  import qualified List
import qualified Prelude



Lambda Reductions:
The following Lambda expression
\vv2
case vv2 of
 x → if any (eq xys then x : [] else []
 _ → []

is transformed to
intersectBy0 eq ys vv2 = 
case vv2 of
 x → if any (eq xys then x : [] else []
 _ → []



↳ HASKELL
  ↳ LR
HASKELL
      ↳ CR

mainModule List
  ((intersect :: [Int ->  [Int ->  [Int]) :: [Int ->  [Int ->  [Int])

module List where
  import qualified Maybe
import qualified Prelude

  intersect :: Eq a => [a ->  [a ->  [a]
intersect intersectBy (==)

  intersectBy :: (a  ->  a  ->  Bool ->  [a ->  [a ->  [a]
intersectBy eq xs ys concatMap (intersectBy0 eq ys) xs

  
intersectBy0 eq ys vv2 
case vv2 of
  x->  if any (eq x) ys then x : [] else []
  _-> []


module Maybe where
  import qualified List
import qualified Prelude



Case Reductions:
The following Case expression
case vv2 of
 x → if any (eq xys then x : [] else []
 _ → []

is transformed to
intersectBy00 eq ys x = if any (eq xys then x : [] else []
intersectBy00 eq ys _ = []



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ CR
HASKELL
          ↳ IFR

mainModule List
  ((intersect :: [Int ->  [Int ->  [Int]) :: [Int ->  [Int ->  [Int])

module List where
  import qualified Maybe
import qualified Prelude

  intersect :: Eq a => [a ->  [a ->  [a]
intersect intersectBy (==)

  intersectBy :: (a  ->  a  ->  Bool ->  [a ->  [a ->  [a]
intersectBy eq xs ys concatMap (intersectBy0 eq ys) xs

  
intersectBy0 eq ys vv2 intersectBy00 eq ys vv2

  
intersectBy00 eq ys x  if any (eq x) ys then x : [] else []
intersectBy00 eq ys _ []


module Maybe where
  import qualified List
import qualified Prelude



If Reductions:
The following If expression
if any (eq xys then x : [] else []

is transformed to
intersectBy000 x True = x : []
intersectBy000 x False = []



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ CR
        ↳ HASKELL
          ↳ IFR
HASKELL
              ↳ BR

mainModule List
  ((intersect :: [Int ->  [Int ->  [Int]) :: [Int ->  [Int ->  [Int])

module List where
  import qualified Maybe
import qualified Prelude

  intersect :: Eq a => [a ->  [a ->  [a]
intersect intersectBy (==)

  intersectBy :: (a  ->  a  ->  Bool ->  [a ->  [a ->  [a]
intersectBy eq xs ys concatMap (intersectBy0 eq ys) xs

  
intersectBy0 eq ys vv2 intersectBy00 eq ys vv2

  
intersectBy00 eq ys x intersectBy000 x (any (eq x) ys)
intersectBy00 eq ys _ []

  
intersectBy000 x True x : []
intersectBy000 x False []


module Maybe where
  import qualified List
import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ CR
        ↳ HASKELL
          ↳ IFR
            ↳ HASKELL
              ↳ BR
HASKELL
                  ↳ COR

mainModule List
  ((intersect :: [Int ->  [Int ->  [Int]) :: [Int ->  [Int ->  [Int])

module List where
  import qualified Maybe
import qualified Prelude

  intersect :: Eq a => [a ->  [a ->  [a]
intersect intersectBy (==)

  intersectBy :: (a  ->  a  ->  Bool ->  [a ->  [a ->  [a]
intersectBy eq xs ys concatMap (intersectBy0 eq ys) xs

  
intersectBy0 eq ys vv2 intersectBy00 eq ys vv2

  
intersectBy00 eq ys x intersectBy000 x (any (eq x) ys)
intersectBy00 eq ys vw []

  
intersectBy000 x True x : []
intersectBy000 x False []


module Maybe where
  import qualified List
import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ CR
        ↳ HASKELL
          ↳ IFR
            ↳ HASKELL
              ↳ BR
                ↳ HASKELL
                  ↳ COR
HASKELL
                      ↳ Narrow

mainModule List
  (intersect :: [Int ->  [Int ->  [Int])

module List where
  import qualified Maybe
import qualified Prelude

  intersect :: Eq a => [a ->  [a ->  [a]
intersect intersectBy (==)

  intersectBy :: (a  ->  a  ->  Bool ->  [a ->  [a ->  [a]
intersectBy eq xs ys concatMap (intersectBy0 eq ys) xs

  
intersectBy0 eq ys vv2 intersectBy00 eq ys vv2

  
intersectBy00 eq ys x intersectBy000 x (any (eq x) ys)
intersectBy00 eq ys vw []

  
intersectBy000 x True x : []
intersectBy000 x False []


module Maybe where
  import qualified List
import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ CR
        ↳ HASKELL
          ↳ IFR
            ↳ HASKELL
              ↳ BR
                ↳ HASKELL
                  ↳ COR
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
QDP
                            ↳ DependencyGraphProof
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_psPs1(Neg(Zero), Neg(Succ(wv4000)), wv41, wv5) → new_psPs5(wv41, wv5)
new_psPs1(Pos(Succ(wv3000)), Pos(Zero), wv41, wv5) → new_psPs0(wv3000, wv41, wv5)
new_psPs3(wv19, Succ(wv200), Succ(wv210), wv22, wv23) → new_psPs3(wv19, wv200, wv210, wv22, wv23)
new_psPs4(wv3000, :(wv410, wv411), wv5) → new_psPs1(Neg(Succ(wv3000)), wv410, wv411, wv5)
new_psPs5(:(wv410, wv411), wv5) → new_psPs1(Neg(Zero), wv410, wv411, wv5)
new_psPs1(Neg(Succ(wv3000)), Neg(Zero), wv41, wv5) → new_psPs4(wv3000, wv41, wv5)
new_psPs1(Pos(Zero), Neg(Succ(wv4000)), wv41, wv5) → new_psPs2(wv41, wv5)
new_psPs1(Pos(Succ(wv3000)), Pos(Succ(wv4000)), wv41, wv5) → new_psPs(wv3000, wv3000, wv4000, wv41, wv5)
new_psPs1(Neg(Succ(wv3000)), Neg(Succ(wv4000)), wv41, wv5) → new_psPs3(wv3000, wv3000, wv4000, wv41, wv5)
new_psPs2(:(wv410, wv411), wv5) → new_psPs1(Pos(Zero), wv410, wv411, wv5)
new_psPs(wv13, Succ(wv140), Zero, wv16, wv17) → new_psPs0(wv13, wv16, wv17)
new_psPs(wv13, Zero, Succ(wv150), wv16, wv17) → new_psPs0(wv13, wv16, wv17)
new_psPs1(Pos(Zero), Pos(Succ(wv4000)), :(wv410, wv411), wv5) → new_psPs1(Pos(Zero), wv410, wv411, wv5)
new_psPs1(Pos(Succ(wv3000)), Neg(wv400), :(wv410, wv411), wv5) → new_psPs1(Pos(Succ(wv3000)), wv410, wv411, wv5)
new_psPs(wv13, Succ(wv140), Succ(wv150), wv16, wv17) → new_psPs(wv13, wv140, wv150, wv16, wv17)
new_psPs1(Neg(Zero), Pos(Succ(wv4000)), :(wv410, wv411), wv5) → new_psPs1(Neg(Zero), wv410, wv411, wv5)
new_psPs1(Neg(Succ(wv3000)), Pos(wv400), :(wv410, wv411), wv5) → new_psPs1(Neg(Succ(wv3000)), wv410, wv411, wv5)
new_psPs0(wv3000, :(wv410, wv411), wv5) → new_psPs1(Pos(Succ(wv3000)), wv410, wv411, wv5)
new_psPs3(wv19, Succ(wv200), Zero, wv22, wv23) → new_psPs4(wv19, wv22, wv23)
new_psPs3(wv19, Zero, Succ(wv210), wv22, wv23) → new_psPs4(wv19, wv22, wv23)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 4 SCCs.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ CR
        ↳ HASKELL
          ↳ IFR
            ↳ HASKELL
              ↳ BR
                ↳ HASKELL
                  ↳ COR
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
QDP
                                  ↳ QDPSizeChangeProof
                                ↳ QDP
                                ↳ QDP
                                ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_psPs2(:(wv410, wv411), wv5) → new_psPs1(Pos(Zero), wv410, wv411, wv5)
new_psPs1(Pos(Zero), Pos(Succ(wv4000)), :(wv410, wv411), wv5) → new_psPs1(Pos(Zero), wv410, wv411, wv5)
new_psPs1(Pos(Zero), Neg(Succ(wv4000)), wv41, wv5) → new_psPs2(wv41, wv5)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ CR
        ↳ HASKELL
          ↳ IFR
            ↳ HASKELL
              ↳ BR
                ↳ HASKELL
                  ↳ COR
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
QDP
                                  ↳ QDPSizeChangeProof
                                ↳ QDP
                                ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_psPs1(Neg(Succ(wv3000)), Neg(Succ(wv4000)), wv41, wv5) → new_psPs3(wv3000, wv3000, wv4000, wv41, wv5)
new_psPs3(wv19, Succ(wv200), Succ(wv210), wv22, wv23) → new_psPs3(wv19, wv200, wv210, wv22, wv23)
new_psPs1(Neg(Succ(wv3000)), Pos(wv400), :(wv410, wv411), wv5) → new_psPs1(Neg(Succ(wv3000)), wv410, wv411, wv5)
new_psPs3(wv19, Succ(wv200), Zero, wv22, wv23) → new_psPs4(wv19, wv22, wv23)
new_psPs4(wv3000, :(wv410, wv411), wv5) → new_psPs1(Neg(Succ(wv3000)), wv410, wv411, wv5)
new_psPs3(wv19, Zero, Succ(wv210), wv22, wv23) → new_psPs4(wv19, wv22, wv23)
new_psPs1(Neg(Succ(wv3000)), Neg(Zero), wv41, wv5) → new_psPs4(wv3000, wv41, wv5)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ CR
        ↳ HASKELL
          ↳ IFR
            ↳ HASKELL
              ↳ BR
                ↳ HASKELL
                  ↳ COR
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
QDP
                                  ↳ QDPSizeChangeProof
                                ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_psPs1(Pos(Succ(wv3000)), Pos(Succ(wv4000)), wv41, wv5) → new_psPs(wv3000, wv3000, wv4000, wv41, wv5)
new_psPs(wv13, Zero, Succ(wv150), wv16, wv17) → new_psPs0(wv13, wv16, wv17)
new_psPs(wv13, Succ(wv140), Zero, wv16, wv17) → new_psPs0(wv13, wv16, wv17)
new_psPs1(Pos(Succ(wv3000)), Neg(wv400), :(wv410, wv411), wv5) → new_psPs1(Pos(Succ(wv3000)), wv410, wv411, wv5)
new_psPs1(Pos(Succ(wv3000)), Pos(Zero), wv41, wv5) → new_psPs0(wv3000, wv41, wv5)
new_psPs(wv13, Succ(wv140), Succ(wv150), wv16, wv17) → new_psPs(wv13, wv140, wv150, wv16, wv17)
new_psPs0(wv3000, :(wv410, wv411), wv5) → new_psPs1(Pos(Succ(wv3000)), wv410, wv411, wv5)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ CR
        ↳ HASKELL
          ↳ IFR
            ↳ HASKELL
              ↳ BR
                ↳ HASKELL
                  ↳ COR
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                ↳ QDP
QDP
                                  ↳ QDPSizeChangeProof
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_psPs1(Neg(Zero), Neg(Succ(wv4000)), wv41, wv5) → new_psPs5(wv41, wv5)
new_psPs1(Neg(Zero), Pos(Succ(wv4000)), :(wv410, wv411), wv5) → new_psPs1(Neg(Zero), wv410, wv411, wv5)
new_psPs5(:(wv410, wv411), wv5) → new_psPs1(Neg(Zero), wv410, wv411, wv5)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ CR
        ↳ HASKELL
          ↳ IFR
            ↳ HASKELL
              ↳ BR
                ↳ HASKELL
                  ↳ COR
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
QDP
                            ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_foldr(wv4, :(wv30, wv31)) → new_foldr(wv4, wv31)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: